Current File : //lib64/python3.6/__pycache__/fractions.cpython-36.opt-1.pyc
3


 \W\�@s�dZddlmZddlZddlZddlZddlZddlZddgZdd�Z	dd�Z
ejjZ
ejjZejd	ejejB�ZGd
d�dej�ZdS)z+Fraction, infinite-precision, real numbers.�)�DecimalN�Fraction�gcdcCsfddl}|jdtd�t|�tko0t|�knr\|p<|dkrPtj||�Stj||�St||�S)z�Calculate the Greatest Common Divisor of a and b.

    Unless b==0, the result will have the same sign as b (so that when
    b is divided by it, the result comes out positive).
    rNz6fractions.gcd() is deprecated. Use math.gcd() instead.�)�warnings�warn�DeprecationWarning�type�int�mathr�_gcd)�a�br�r�!/usr/lib64/python3.6/fractions.pyrs cCsx|r|||}}qW|S)Nr)r
rrrrr sraC
    \A\s*                      # optional whitespace at the start, then
    (?P<sign>[-+]?)            # an optional sign, then
    (?=\d|\.\d)                # lookahead for digit or .digit
    (?P<num>\d*)               # numerator (possibly empty)
    (?:                        # followed by
       (?:/(?P<denom>\d+))?    # an optional denominator
    |                          # or
       (?:\.(?P<decimal>\d*))? # an optional fractional part
       (?:E(?P<exp>[-+]?\d+))? # and optional exponent
    )
    \s*\Z                      # and optional whitespace to finish
cs�eZdZdZdSZdTdd��fdd	�Zed
d��Zedd
��ZdUdd�Z	e
dd��Ze
dd��Zdd�Z
dd�Zdd�Zdd�Zeeej�\ZZdd�Zeeej�\ZZdd �Zeeej�\ZZd!d"�Zeeej�\ZZ d#d$�Z!d%d&�Z"d'd(�Z#d)d*�Z$d+d,�Z%d-d.�Z&d/d0�Z'd1d2�Z(d3d4�Z)d5d6�Z*d7d8�Z+d9d:�Z,dVd;d<�Z-d=d>�Z.d?d@�Z/dAdB�Z0dCdD�Z1dEdF�Z2dGdH�Z3dIdJ�Z4dKdL�Z5dMdN�Z6dOdP�Z7dQdR�Z8�Z9S)Wra]This class implements rational numbers.

    In the two-argument form of the constructor, Fraction(8, 6) will
    produce a rational number equivalent to 4/3. Both arguments must
    be Rational. The numerator defaults to 0 and the denominator
    defaults to 1 so that Fraction(3) == 3 and Fraction() == 0.

    Fractions can also be constructed from:

      - numeric strings similar to those accepted by the
        float constructor (for example, '-2.3' or '1e10')

      - strings of the form '123/456'

      - float and Decimal instances

      - other Rational instances (including integers)

    �
_numerator�_denominatorrNT)�
_normalizecsRtt|�j|�}|dk�rdt|�tkr6||_d|_|St|tj	�rV|j
|_|j|_|St|tt
f�rx|j�\|_|_|St|t��rZtj|�}|dkr�td|��t|jd�p�d�}|jd�}|r�t|�}nvd}|jd�}|�rdt|�}||t|�}||9}|jd	�}	|	�rBt|	�}	|	d
k�r4|d|	9}n|d|	9}|jd�dk�rb|}ntd
��nft|�tk�o�t|�kn�r�n@t|tj	��r�t|tj	��r�|j
|j|j
|j}}ntd��|d
k�r�td|��|�rBt|�tk�ot|�kn�r(tj||�}
|d
k�r2|
}
n
t||�}
||
}||
}||_||_|S)a�Constructs a Rational.

        Takes a string like '3/2' or '1.5', another Rational instance, a
        numerator/denominator pair, or a float.

        Examples
        --------

        >>> Fraction(10, -8)
        Fraction(-5, 4)
        >>> Fraction(Fraction(1, 7), 5)
        Fraction(1, 35)
        >>> Fraction(Fraction(1, 7), Fraction(2, 3))
        Fraction(3, 14)
        >>> Fraction('314')
        Fraction(314, 1)
        >>> Fraction('-35/4')
        Fraction(-35, 4)
        >>> Fraction('3.1415') # conversion from numeric string
        Fraction(6283, 2000)
        >>> Fraction('-47e-2') # string may include a decimal exponent
        Fraction(-47, 100)
        >>> Fraction(1.47)  # direct construction from float (exact conversion)
        Fraction(6620291452234629, 4503599627370496)
        >>> Fraction(2.25)
        Fraction(9, 4)
        >>> Fraction(Decimal('1.47'))
        Fraction(147, 100)

        N�z Invalid literal for Fraction: %rZnum�0�denom�decimal�
�exprZsign�-z2argument should be a string or a Rational instancez+both arguments should be Rational instanceszFraction(%s, 0))�superr�__new__r	r
rr�
isinstance�numbers�Rational�	numerator�denominator�floatr�as_integer_ratio�str�_RATIONAL_FORMAT�match�
ValueError�group�len�	TypeError�ZeroDivisionErrorrrr)�clsr r!r�self�mrrZscaler�g)�	__class__rrrTsr







$

$

zFraction.__new__cCsDt|tj�r||�St|t�s8td|j|t|�jf��||j��S)z�Converts a finite float to a rational number, exactly.

        Beware that Fraction.from_float(0.3) != Fraction(3, 10).

        z.%s.from_float() only takes floats, not %r (%s))rr�Integralr"r*�__name__r	r#)r,�frrr�
from_float�s
zFraction.from_floatcCsVddlm}t|tj�r&|t|��}n$t||�sJtd|j|t|�jf��||j	��S)zAConverts a finite Decimal instance to a rational number, exactly.r)rz2%s.from_decimal() only takes Decimals, not %r (%s))
rrrrr1r
r*r2r	r#)r,Zdecrrrr�from_decimal�s
zFraction.from_decimal�@Bc
Cs�|dkrtd��|j|kr"t|�Sd\}}}}|j|j}}xP||}|||}	|	|kr\P||||||	f\}}}}||||}}q>W|||}
t||
|||
|�}t||�}t||�t||�kr�|S|SdS)aWClosest Fraction to self with denominator at most max_denominator.

        >>> Fraction('3.141592653589793').limit_denominator(10)
        Fraction(22, 7)
        >>> Fraction('3.141592653589793').limit_denominator(100)
        Fraction(311, 99)
        >>> Fraction(4321, 8765).limit_denominator(10000)
        Fraction(4321, 8765)

        rz$max_denominator should be at least 1rN)rrrr)r'rrr�abs)
r-Zmax_denominatorZp0Zq0Zp1Zq1�n�dr
Zq2�kZbound1Zbound2rrr�limit_denominator�s& 

zFraction.limit_denominatorcCs|jS)N)r)r
rrrr szFraction.numeratorcCs|jS)N)r)r
rrrr!szFraction.denominatorcCsd|jj|j|jfS)z
repr(self)z
%s(%s, %s))r0r2rr)r-rrr�__repr__szFraction.__repr__cCs(|jdkrt|j�Sd|j|jfSdS)z	str(self)rz%s/%sN)rr$r)r-rrr�__str__s

zFraction.__str__csT��fdd�}d�jd|_�j|_��fdd�}d�jd|_�j|_||fS)a�Generates forward and reverse operators given a purely-rational
        operator and a function from the operator module.

        Use this like:
        __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)

        In general, we want to implement the arithmetic operations so
        that mixed-mode operations either call an implementation whose
        author knew about the types of both arguments, or convert both
        to the nearest built in type and do the operation there. In
        Fraction, that means that we define __add__ and __radd__ as:

            def __add__(self, other):
                # Both types have numerators/denominator attributes,
                # so do the operation directly
                if isinstance(other, (int, Fraction)):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                # float and complex don't have those operations, but we
                # know about those types, so special case them.
                elif isinstance(other, float):
                    return float(self) + other
                elif isinstance(other, complex):
                    return complex(self) + other
                # Let the other type take over.
                return NotImplemented

            def __radd__(self, other):
                # radd handles more types than add because there's
                # nothing left to fall back to.
                if isinstance(other, numbers.Rational):
                    return Fraction(self.numerator * other.denominator +
                                    other.numerator * self.denominator,
                                    self.denominator * other.denominator)
                elif isinstance(other, Real):
                    return float(other) + float(self)
                elif isinstance(other, Complex):
                    return complex(other) + complex(self)
                return NotImplemented


        There are 5 different cases for a mixed-type addition on
        Fraction. I'll refer to all of the above code that doesn't
        refer to Fraction, float, or complex as "boilerplate". 'r'
        will be an instance of Fraction, which is a subtype of
        Rational (r : Fraction <: Rational), and b : B <:
        Complex. The first three involve 'r + b':

            1. If B <: Fraction, int, float, or complex, we handle
               that specially, and all is well.
            2. If Fraction falls back to the boilerplate code, and it
               were to return a value from __add__, we'd miss the
               possibility that B defines a more intelligent __radd__,
               so the boilerplate should return NotImplemented from
               __add__. In particular, we don't handle Rational
               here, even though we could get an exact answer, in case
               the other type wants to do something special.
            3. If B <: Fraction, Python tries B.__radd__ before
               Fraction.__add__. This is ok, because it was
               implemented with knowledge of Fraction, so it can
               handle those instances before delegating to Real or
               Complex.

        The next two situations describe 'b + r'. We assume that b
        didn't know about Fraction in its implementation, and that it
        uses similar boilerplate code:

            4. If B <: Rational, then __radd_ converts both to the
               builtin rational type (hey look, that's us) and
               proceeds.
            5. Otherwise, __radd__ tries to find the nearest common
               base ABC, and fall back to its builtin type. Since this
               class doesn't subclass a concrete type, there's no
               implementation to fall back to, so we need to try as
               hard as possible to return an actual value, or the user
               will get a TypeError.

        csPt|ttf�r�||�St|t�r0�t|�|�St|t�rH�t|�|�StSdS)N)rr
rr"�complex�NotImplemented)r
r)�fallback_operator�monomorphic_operatorrr�forwardvs


z-Fraction._operator_fallbacks.<locals>.forward�__csZt|tj�r�||�St|tj�r4�t|�t|��St|tj�rR�t|�t|��StSdS)N)rrrZRealr"�Complexr>r?)rr
)r@rArr�reverse�s
z-Fraction._operator_fallbacks.<locals>.reverseZ__r)r2�__doc__)rAr@rBrEr)r@rAr�_operator_fallbacks&sP	
zFraction._operator_fallbackscCs,|j|j}}t|j||j|||�S)za + b)r!rr )r
r�da�dbrrr�_add�sz
Fraction._addcCs,|j|j}}t|j||j|||�S)za - b)r!rr )r
rrHrIrrr�_sub�sz
Fraction._subcCst|j|j|j|j�S)za * b)rr r!)r
rrrr�_mul�sz
Fraction._mulcCst|j|j|j|j�S)za / b)rr r!)r
rrrr�_div�sz
Fraction._divcCstj||�S)za // b)r�floor)r
rrrr�__floordiv__�szFraction.__floordiv__cCstj||�S)za // b)rrN)rr
rrr�
__rfloordiv__�szFraction.__rfloordiv__cCs||}|||S)za % br)r
r�divrrr�__mod__�szFraction.__mod__cCs||}|||S)za % br)rr
rQrrr�__rmod__�szFraction.__rmod__cCs�t|tj�r�|jdkr�|j}|dkr>t|j||j|dd�S|jdkrft|j||j|dd�St|j||j|dd�Sq�t|�t|�Snt|�|SdS)z�a ** b

        If b is not an integer, the result will be a float or complex
        since roots are generally irrational. If b is an integer, the
        result will be rational.

        rrF)rN)	rrrr!r rrrr")r
rZpowerrrr�__pow__�s 




zFraction.__pow__cCs\|jdkr|jdkr||jSt|tj�r<t|j|j�|S|jdkrP||jS|t|�S)za ** brr)	rrrrrrr r!r")rr
rrr�__rpow__�s


zFraction.__rpow__cCst|j|jdd�S)z++a: Coerces a subclass instance to FractionF)r)rrr)r
rrr�__pos__�szFraction.__pos__cCst|j|jdd�S)z-aF)r)rrr)r
rrr�__neg__�szFraction.__neg__cCstt|j�|jdd�S)zabs(a)F)r)rr7rr)r
rrr�__abs__�szFraction.__abs__cCs*|jdkr|j|jS|j|jSdS)ztrunc(a)rN)rr)r
rrr�	__trunc__�s
zFraction.__trunc__cCs|j|jS)zWill be math.floor(a) in 3.0.)r r!)r
rrr�	__floor__�szFraction.__floor__cCs|j|jS)zWill be math.ceil(a) in 3.0.)r r!)r
rrr�__ceil__szFraction.__ceil__cCs�|dkrZt|j|j�\}}|d|jkr,|S|d|jkrB|dS|ddkrR|S|dSdt|�}|dkr�tt||�|�Stt||�|�SdS)zOWill be round(self, ndigits) in 3.0.

        Rounds half toward even.
        Nrrrr)�divmodr r!r7r�round)r-ZndigitsrNZ	remainderZshiftrrr�	__round__szFraction.__round__cCsPt|jtdt�}|st}nt|j�|t}|dkr:|n|}|dkrLdS|S)z
hash(self)rrr������)�powr�_PyHASH_MODULUS�_PyHASH_INFr7r)r-ZdinvZhash_�resultrrr�__hash__!szFraction.__hash__cCs�t|�tkr |j|ko|jdkSt|tj�rD|j|jkoB|j|jkSt|tj	�r`|j
dkr`|j}t|t�r�t
j|�s~t
j|�r�d|kS||j|�kSntSdS)za == brrgN)r	r
rrrrrr r!rD�imag�realr"r�isnan�isinfr4r?)r
rrrr�__eq__7s
zFraction.__eq__cCsht|tj�r&||j|j|j|j�St|t�r`tj	|�sDtj
|�rN|d|�S|||j|��SntSdS)acHelper for comparison operators, for internal use only.

        Implement comparison between a Rational instance `self`, and
        either another Rational instance or a float `other`.  If
        `other` is not a Rational instance or a float, return
        NotImplemented. `op` should be one of the six standard
        comparison operators.

        gN)
rrrrr!rr r"rrhrir4r?)r-�other�oprrr�_richcmpLs

zFraction._richcmpcCs|j|tj�S)za < b)rm�operator�lt)r
rrrr�__lt__bszFraction.__lt__cCs|j|tj�S)za > b)rmrn�gt)r
rrrr�__gt__fszFraction.__gt__cCs|j|tj�S)za <= b)rmrn�le)r
rrrr�__le__jszFraction.__le__cCs|j|tj�S)za >= b)rmrn�ge)r
rrrr�__ge__nszFraction.__ge__cCs
|jdkS)za != 0r)r)r
rrr�__bool__rszFraction.__bool__cCs|jt|�ffS)N)r0r$)r-rrr�
__reduce__xszFraction.__reduce__cCs t|�tkr|S|j|j|j�S)N)r	rr0rr)r-rrr�__copy__{szFraction.__copy__cCs t|�tkr|S|j|j|j�S)N)r	rr0rr)r-�memorrr�__deepcopy__�szFraction.__deepcopy__)rr)rN)r6)N):r2�
__module__�__qualname__rF�	__slots__r�classmethodr4r5r;�propertyr r!r<r=rGrJrn�add�__add__�__radd__rK�sub�__sub__�__rsub__rL�mul�__mul__�__rmul__rM�truediv�__truediv__�__rtruediv__rOrPrRrSrTrUrVrWrXrYrZr[r^rerjrmrprrrtrvrwrxryr{�
__classcell__rr)r0rr<sVm
7k
)rFrrrrrn�re�sys�__all__rr�	hash_info�modulusrb�infrc�compile�VERBOSE�
IGNORECASEr%rrrrrr�<module>s
No se encontró la página – Alquiler de Limusinas, Autos Clásicos y Microbuses

Alquiler de Autos Clásicos para Sesiones Fotográficas: Estilo y Elegancia en Cada Toma

Si buscas darle un toque auténtico, elegante o retro a tus fotos, el alquiler de autos clásicos para sesiones fotográficas es la opción ideal. Este tipo de vehículos no solo son íconos del diseño automotriz, sino que se convierten en un elemento visual impactante que transforma cualquier sesión en una experiencia única.


¿Por Qué Usar Autos Clásicos en Sesiones Fotográficas?

1. Estética Visual Única

Un auto clásico aporta personalidad, historia y carácter a tus imágenes. Desde tomas urbanas hasta escenarios naturales, estos vehículos se adaptan a diferentes estilos visuales.

2. Ideal para Diversos Usos

  • Sesiones de boda y pre-boda
  • Campañas publicitarias
  • Editoriales de moda
  • Proyectos cinematográficos
  • Contenido para redes sociales

3. Variedad de Modelos

Desde convertibles vintage hasta muscle cars de los años 60 y 70, puedes elegir el modelo que mejor se ajuste a la estética de tu sesión.


Beneficios del Alquiler Profesional

  • Vehículos en excelente estado estético y mecánico
  • Choferes disponibles si se requiere movilidad
  • Asesoría para elegir el modelo adecuado
  • Posibilidad de ambientación adicional (flores, letreros, decoración retro)

Conclusión: Captura Momentos con Estilo

Un auto clásico puede transformar tu sesión fotográfica en una obra de arte visual. No importa el propósito: el estilo, la elegancia y el impacto están garantizados.


📸 ¡Reserva tu auto clásico y crea fotos memorables!

Consulta disponibilidad y haz de tu sesión algo realmente especial. ¡Llama la atención con cada toma!

Not Found

404

Sorry, the page you’re looking for doesn’t exist.