Current File : //lib64/python3.6/__pycache__/numbers.cpython-36.opt-1.pyc
3


 \(�@s�dZddlmZmZdddddgZGdd�ded	�ZGd
d�de�Zeje�Gdd�de�Z	e	je
�Gdd�de	�ZGd
d�de�Zeje
�dS)z~Abstract Base Classes (ABCs) for numbers, according to PEP 3141.

TODO: Fill out more detailed documentation on the operators.�)�ABCMeta�abstractmethod�Number�Complex�Real�Rational�Integralc@seZdZdZfZdZdS)rz�All numbers inherit from this class.

    If you just want to check if an argument x is a number, without
    caring what kind, use isinstance(x, Number).
    N)�__name__�
__module__�__qualname__�__doc__�	__slots__�__hash__�rr�/usr/lib64/python3.6/numbers.pyrs)�	metaclassc@s�eZdZdZfZedd��Zdd�Zeedd���Z	eedd	���Z
ed
d��Zedd
��Zedd��Z
edd��Zdd�Zdd�Zedd��Zedd��Zedd��Zedd��Zedd��Zed d!��Zed"d#��Zed$d%��Zed&d'��Zd(S))raaComplex defines the operations that work on the builtin complex type.

    In short, those are: a conversion to complex, .real, .imag, +, -,
    *, /, abs(), .conjugate, ==, and !=.

    If it is given heterogenous arguments, and doesn't have special
    knowledge about them, it should fall back to the builtin complex
    type as described below.
    cCsdS)z<Return a builtin complex instance. Called for complex(self).Nr)�selfrrr�__complex__-szComplex.__complex__cCs|dkS)z)True if self != 0. Called for bool(self).rr)rrrr�__bool__1szComplex.__bool__cCst�dS)zXRetrieve the real component of this number.

        This should subclass Real.
        N)�NotImplementedError)rrrr�real5szComplex.realcCst�dS)z]Retrieve the imaginary component of this number.

        This should subclass Real.
        N)r)rrrr�imag>szComplex.imagcCst�dS)zself + otherN)r)r�otherrrr�__add__GszComplex.__add__cCst�dS)zother + selfN)r)rrrrr�__radd__LszComplex.__radd__cCst�dS)z-selfN)r)rrrr�__neg__QszComplex.__neg__cCst�dS)z+selfN)r)rrrr�__pos__VszComplex.__pos__cCs
||S)zself - otherr)rrrrr�__sub__[szComplex.__sub__cCs
||S)zother - selfr)rrrrr�__rsub___szComplex.__rsub__cCst�dS)zself * otherN)r)rrrrr�__mul__cszComplex.__mul__cCst�dS)zother * selfN)r)rrrrr�__rmul__hszComplex.__rmul__cCst�dS)z5self / other: Should promote to float when necessary.N)r)rrrrr�__truediv__mszComplex.__truediv__cCst�dS)zother / selfN)r)rrrrr�__rtruediv__rszComplex.__rtruediv__cCst�dS)zBself**exponent; should promote to float or complex when necessary.N)r)r�exponentrrr�__pow__wszComplex.__pow__cCst�dS)zbase ** selfN)r)r�baserrr�__rpow__|szComplex.__rpow__cCst�dS)z7Returns the Real distance from 0. Called for abs(self).N)r)rrrr�__abs__�szComplex.__abs__cCst�dS)z$(x+y*i).conjugate() returns (x-y*i).N)r)rrrr�	conjugate�szComplex.conjugatecCst�dS)z
self == otherN)r)rrrrr�__eq__�szComplex.__eq__N)r	r
rrr
rrr�propertyrrrrrrrrrr r!r"r$r&r'r(r)rrrrr s.	c@s�eZdZdZfZedd��Zedd��Zedd��Zedd	��Z	ed%dd��Z
d
d�Zdd�Zedd��Z
edd��Zedd��Zedd��Zedd��Zedd��Zdd�Zedd ��Zed!d"��Zd#d$�Zd
S)&rz�To Complex, Real adds the operations that work on real numbers.

    In short, those are: a conversion to float, trunc(), divmod,
    %, <, <=, >, and >=.

    Real also provides defaults for the derived operations.
    cCst�dS)zTAny Real can be converted to a native float object.

        Called for float(self).N)r)rrrr�	__float__�szReal.__float__cCst�dS)aGtrunc(self): Truncates self to an Integral.

        Returns an Integral i such that:
          * i>0 iff self>0;
          * abs(i) <= abs(self);
          * for any Integral j satisfying the first two conditions,
            abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
        i.e. "truncate towards 0".
        N)r)rrrr�	__trunc__�szReal.__trunc__cCst�dS)z$Finds the greatest Integral <= self.N)r)rrrr�	__floor__�szReal.__floor__cCst�dS)z!Finds the least Integral >= self.N)r)rrrr�__ceil__�sz
Real.__ceil__NcCst�dS)z�Rounds self to ndigits decimal places, defaulting to 0.

        If ndigits is omitted or None, returns an Integral, otherwise
        returns a Real. Rounds half toward even.
        N)r)rZndigitsrrr�	__round__�szReal.__round__cCs||||fS)z�divmod(self, other): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        r)rrrrr�
__divmod__�szReal.__divmod__cCs||||fS)z�divmod(other, self): The pair (self // other, self % other).

        Sometimes this can be computed faster than the pair of
        operations.
        r)rrrrr�__rdivmod__�szReal.__rdivmod__cCst�dS)z)self // other: The floor() of self/other.N)r)rrrrr�__floordiv__�szReal.__floordiv__cCst�dS)z)other // self: The floor() of other/self.N)r)rrrrr�
__rfloordiv__�szReal.__rfloordiv__cCst�dS)zself % otherN)r)rrrrr�__mod__�szReal.__mod__cCst�dS)zother % selfN)r)rrrrr�__rmod__�sz
Real.__rmod__cCst�dS)zRself < other

        < on Reals defines a total ordering, except perhaps for NaN.N)r)rrrrr�__lt__�szReal.__lt__cCst�dS)z
self <= otherN)r)rrrrr�__le__�szReal.__le__cCstt|��S)z(complex(self) == complex(float(self), 0))�complex�float)rrrrr�szReal.__complex__cCs|
S)z&Real numbers are their real component.r)rrrrr�sz	Real.realcCsdS)z)Real numbers have no imaginary component.rr)rrrrr�sz	Real.imagcCs|
S)zConjugate is a no-op for Reals.r)rrrrr(szReal.conjugate)N)r	r
rrr
rr+r,r-r.r/r0r1r2r3r4r5r6r7rr*rrr(rrrrr�s(
c@s<eZdZdZfZeedd���Zeedd���Zdd�Z	dS)	rz6.numerator and .denominator should be in lowest terms.cCst�dS)N)r)rrrr�	numeratorszRational.numeratorcCst�dS)N)r)rrrr�denominatorszRational.denominatorcCs|j|jS)afloat(self) = self.numerator / self.denominator

        It's important that this conversion use the integer's "true"
        division rather than casting one side to float before dividing
        so that ratios of huge integers convert without overflowing.

        )r:r;)rrrrr+szRational.__float__N)
r	r
rrr
r*rr:r;r+rrrrrsc@s�eZdZdZfZedd��Zdd�Zed%dd��Zed	d
��Z	edd��Z
ed
d��Zedd��Zedd��Z
edd��Zedd��Zedd��Zedd��Zedd��Zedd��Zdd �Zed!d"��Zed#d$��ZdS)&rz@Integral adds a conversion to int and the bit-string operations.cCst�dS)z	int(self)N)r)rrrr�__int__+szIntegral.__int__cCst|�S)z6Called whenever an index is needed, such as in slicing)�int)rrrr�	__index__0szIntegral.__index__NcCst�dS)a4self ** exponent % modulus, but maybe faster.

        Accept the modulus argument if you want to support the
        3-argument version of pow(). Raise a TypeError if exponent < 0
        or any argument isn't Integral. Otherwise, just implement the
        2-argument version described in Complex.
        N)r)rr#�modulusrrrr$4s	zIntegral.__pow__cCst�dS)z
self << otherN)r)rrrrr�
__lshift__?szIntegral.__lshift__cCst�dS)z
other << selfN)r)rrrrr�__rlshift__DszIntegral.__rlshift__cCst�dS)z
self >> otherN)r)rrrrr�
__rshift__IszIntegral.__rshift__cCst�dS)z
other >> selfN)r)rrrrr�__rrshift__NszIntegral.__rrshift__cCst�dS)zself & otherN)r)rrrrr�__and__SszIntegral.__and__cCst�dS)zother & selfN)r)rrrrr�__rand__XszIntegral.__rand__cCst�dS)zself ^ otherN)r)rrrrr�__xor__]szIntegral.__xor__cCst�dS)zother ^ selfN)r)rrrrr�__rxor__bszIntegral.__rxor__cCst�dS)zself | otherN)r)rrrrr�__or__gszIntegral.__or__cCst�dS)zother | selfN)r)rrrrr�__ror__lszIntegral.__ror__cCst�dS)z~selfN)r)rrrr�
__invert__qszIntegral.__invert__cCstt|��S)zfloat(self) == float(int(self)))r9r=)rrrrr+wszIntegral.__float__cCs|
S)z"Integers are their own numerators.r)rrrrr:{szIntegral.numeratorcCsdS)z!Integers have a denominator of 1.�r)rrrrr;�szIntegral.denominator)N)r	r
rrr
rr<r>r$r@rArBrCrDrErFrGrHrIrJr+r*r:r;rrrrr&s(
N)r�abcrr�__all__rr�registerr8rr9rrr=rrrr�<module>sp
u
_
No se encontró la página – Alquiler de Limusinas, Autos Clásicos y Microbuses

Alquiler de Autos Clásicos para Sesiones Fotográficas: Estilo y Elegancia en Cada Toma

Si buscas darle un toque auténtico, elegante o retro a tus fotos, el alquiler de autos clásicos para sesiones fotográficas es la opción ideal. Este tipo de vehículos no solo son íconos del diseño automotriz, sino que se convierten en un elemento visual impactante que transforma cualquier sesión en una experiencia única.


¿Por Qué Usar Autos Clásicos en Sesiones Fotográficas?

1. Estética Visual Única

Un auto clásico aporta personalidad, historia y carácter a tus imágenes. Desde tomas urbanas hasta escenarios naturales, estos vehículos se adaptan a diferentes estilos visuales.

2. Ideal para Diversos Usos

  • Sesiones de boda y pre-boda
  • Campañas publicitarias
  • Editoriales de moda
  • Proyectos cinematográficos
  • Contenido para redes sociales

3. Variedad de Modelos

Desde convertibles vintage hasta muscle cars de los años 60 y 70, puedes elegir el modelo que mejor se ajuste a la estética de tu sesión.


Beneficios del Alquiler Profesional

  • Vehículos en excelente estado estético y mecánico
  • Choferes disponibles si se requiere movilidad
  • Asesoría para elegir el modelo adecuado
  • Posibilidad de ambientación adicional (flores, letreros, decoración retro)

Conclusión: Captura Momentos con Estilo

Un auto clásico puede transformar tu sesión fotográfica en una obra de arte visual. No importa el propósito: el estilo, la elegancia y el impacto están garantizados.


📸 ¡Reserva tu auto clásico y crea fotos memorables!

Consulta disponibilidad y haz de tu sesión algo realmente especial. ¡Llama la atención con cada toma!

Not Found

404

Sorry, the page you’re looking for doesn’t exist.