Current File : //usr/share/doc/cairo/BIBLIOGRAPHY
Here's an effort to document some of the academic work that was
referenced during the implementation of cairo. It is presented in the
context of operations as they would be performed by either
cairo_stroke() or cairo_fill():

Given a Bézier path, approximate it with line segments:

	The deCasteljau algorithm
	"Outillages methodes calcul", P de Casteljau, technical
	report, - Andre Citroen Automobiles SA, Paris, 1959

	That technical report might be "hard" to find, but fortunately
	this algorithm will be described in any reasonable textbook on
	computational geometry. Two that have been recommended by
	cairo contributors are:

	"Computational Geometry, Algorithms and Applications", M. de
	Berg, M. van Kreveld, M. Overmars, M. Schwarzkopf;
	Springer-Verlag, ISBN: 3-540-65620-0.

	"Computational Geometry in C (Second Edition)", Joseph
	O'Rourke, Cambridge University Press, ISBN 0521640105.

Then, if stroking, construct a polygonal representation of the pen
approximating a circle (if filling skip three steps):

	"Good approximation of circles by curvature-continuous Bezier
	curves", Tor Dokken and Morten Daehlen, Computer Aided
	Geometric Design 8 (1990) 22-41.

Add points to that pen based on the initial/final path faces and take
the convex hull:

	Convex hull algorithm

	[Again, see your favorite computational geometry
	textbook. Should cite the name of the algorithm cairo uses
	here, if it has a name.]

Now, "convolve" the "tracing" of the pen with the tracing of the path:

	"A Kinetic Framework for Computational Geometry", Leonidas
        J. Guibas, Lyle Ramshaw, and Jorge Stolfi, Proceedings of the
        24th IEEE Annual Symposium on Foundations of Computer Science
        (FOCS), November 1983, 100-111.

The result of the convolution is a polygon that must be filled. A fill
operations begins here. We use a very conventional Bentley-Ottmann
pass for computing the intersections, informed by some hints on robust
implementation courtesy of John Hobby:

	John D. Hobby, Practical Segment Intersection with Finite
	Precision Output, Computation Geometry Theory and
	Applications, 13(4), 1999.

	http://cm.bell-labs.com/who/hobby/93_2-27.pdf

Hobby's primary contribution in that paper is his "tolerance square"
algorithm for robustness against edges being "bent" due to restricting
intersection coordinates to the grid available by finite-precision
arithmetic. This is one algorithm we have not implemented yet.

We use a data-structure called Skiplists in the our implementation
of Bentley-Ottmann:

	W. Pugh, Skip Lists: a Probabilistic Alternative to Balanced Trees,
	Communications of the ACM, vol. 33, no. 6, pp.668-676, 1990.

	http://citeseer.ist.psu.edu/pugh90skip.html

The random number generator used in our skip list implementation is a
very small generator by Hars and Petruska.  The generator is based on
an invertable function on Z_{2^32} with full period and is described
in

	Hars L. and Petruska G.,
	``Pseudorandom Recursions: Small and Fast Pseurodandom
	  Number Generators for Embedded Applications'',
	Hindawi Publishing Corporation
	EURASIP Journal on Embedded Systems
	Volume 2007, Article ID 98417, 13 pages
	doi:10.1155/2007/98417

	http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/98417&e=cta

From the result of the intersection-finding pass, we are currently
computing a tessellation of trapezoids, (the exact manner is
undergoing some work right now with some important speedup), but we
may want to rasterize directly from those edges at some point.

Given the set of tessellated trapezoids, we currently execute a
straightforward, (and slow), point-sampled rasterization, (and
currently with a near-pessimal regular 15x17 grid).

We've now computed a mask which gets fed along with the source and
destination into cairo's fundamental rendering equation. The most
basic form of this equation is:

	destination = (source IN mask) OP destination

with the restriction that no part of the destination outside the
current clip region is affected. In this equation, IN refers to the
Porter-Duff "in" operation, while OP refers to a any user-selected
Porter-Duff operator:

	T. Porter & T. Duff, Compositing Digital Images Computer
	Graphics Volume 18, Number 3 July 1984 pp 253-259

	http://keithp.com/~keithp/porterduff/p253-porter.pdf
No se encontró la página – Alquiler de Limusinas, Autos Clásicos y Microbuses

Alquiler de Autos Clásicos para Sesiones Fotográficas: Estilo y Elegancia en Cada Toma

Si buscas darle un toque auténtico, elegante o retro a tus fotos, el alquiler de autos clásicos para sesiones fotográficas es la opción ideal. Este tipo de vehículos no solo son íconos del diseño automotriz, sino que se convierten en un elemento visual impactante que transforma cualquier sesión en una experiencia única.


¿Por Qué Usar Autos Clásicos en Sesiones Fotográficas?

1. Estética Visual Única

Un auto clásico aporta personalidad, historia y carácter a tus imágenes. Desde tomas urbanas hasta escenarios naturales, estos vehículos se adaptan a diferentes estilos visuales.

2. Ideal para Diversos Usos

  • Sesiones de boda y pre-boda
  • Campañas publicitarias
  • Editoriales de moda
  • Proyectos cinematográficos
  • Contenido para redes sociales

3. Variedad de Modelos

Desde convertibles vintage hasta muscle cars de los años 60 y 70, puedes elegir el modelo que mejor se ajuste a la estética de tu sesión.


Beneficios del Alquiler Profesional

  • Vehículos en excelente estado estético y mecánico
  • Choferes disponibles si se requiere movilidad
  • Asesoría para elegir el modelo adecuado
  • Posibilidad de ambientación adicional (flores, letreros, decoración retro)

Conclusión: Captura Momentos con Estilo

Un auto clásico puede transformar tu sesión fotográfica en una obra de arte visual. No importa el propósito: el estilo, la elegancia y el impacto están garantizados.


📸 ¡Reserva tu auto clásico y crea fotos memorables!

Consulta disponibilidad y haz de tu sesión algo realmente especial. ¡Llama la atención con cada toma!

Not Found

404

Sorry, the page you’re looking for doesn’t exist.